CHARACTERIZATION OF BACILLUS SPECIES ISOLATED FROM PASTEURIZED MILK*

B. Murugan¹, G. Kumaresan and R. Annal villi
Department of Dairy Science,
Veterinary College and Research Institute,
Namakkal – 637 002, Tamil Nadu.

ABSTRACT

Sixty pasteurized milk samples were collected aseptically from different processing dairies and analyzed for total viable count and aerobic spore count. Bacillus subtilis was found to be the predominant aerobic spore former (33.33%) followed by B.megaterium (24.44%), B.licheniformis (17.77%), B.cereus (8.88%), B.coagulans (6.66%), B.pumilus (4.44%), B.sphaericus (2.22%), and B.circulans (2.22%). The total viable count (log₁₀ cfu per ml) varied between 4.18 ± 0.095 and 4.43 ± 0.081 among nine different processing dairies and it was the lowest in lab-pasteurized samples (3.65 ± 0.078). The mean aerobic spore count (log₁₀ cfu per ml) varied between 3.56 ± 0.051 and 3.87 ± 0.112 among the processing dairies and the lowest values were obtained in lab pasteurized milk samples at 3.09 ± 0.085. Out of forty five Bacillus species isolated, twenty five isolates were positive for proteolysis and seventeen for lipolysis and twelve isolates for both proteolysis and lipolysis.

Key words : Pasteurized milk, Bacillus species, Proteolytic and Lipolytic activity

INTRODUCTION

Bacillus species play a very important role in the keeping quality of milk and dairy products. These organisms survive heat treatment and high temperature used for processing of the products, activates spore germination and out growth, resulting in spoilage of products. Bacillus cereus is important as it affects the shelf life of pasteurized milk and heat treated dairy products. The organism is associated with defects such as off flavours, sweet curdling and bitty cream caused by proteinase, lipase and phospholipase enzymes (Meer et al., 1991). In addition to causing these defects in dairy products, B.cereus has also been associated with out breaks of food poisoning (Johnson, 1984; Kraemer and Gilbert, 1989). The objectives of this research work include studies on the incidence of various Bacillus species in pasteurized milk, their biochemical characterization and proteolytic and lipolytic activity.

MATERIALS AND METHODS

Nine different processing dairies were selected randomly and 6 pasteurized milk samples from each dairy were collected in an aseptic manner at weekly intervals for 6 weeks and brought to the laboratory under refrigerated condition for further analysis. Six lab pasteurized milk samples were also used in the study.

The total viable count and aerobic spore count were carried out as per the standard methods.

*Part of the Ph.D thesis submitted to the Tamil Nadu Veterinary and Animal Sciences University, Chennai – 600 051, Tamil Nadu.
¹Assistant Professor, Department of Dairy Science, Veterinary College and Research Institute, Namakkal – 637 002, Tamil Nadu.

Representative colonies that had developed on the plates after incubation were isolated and inoculated in to the nutrient broth. The purification of the culture was done by placing and sub culturing in nutrient broth. The cultures were examined under the microscope for purity. The presence of spores was confirmed by spore staining technique (Cowan and Steel, 1974). The isolates were identified by morphological, cultural and biochemical tests following the methods described by Buchanan and Gibbons (1974) and they were assigned serial numbers.

The proteolytic activity was tested by culturing the strains on 50% skim milk agar and incubating the plates at 37°C for 24 – 48 h. Presence of clear zone of hydrolysis around the colonies was taken as positive for proteolysis (APHA, 1978).

The lipolytic activity was tested by culturing the strains in tributyrin agar and incubating the plates at 37°C for 3 days and screening the plates for the presence of clear zone of hydrolysis as described by Harrigan and McCance (1976).

The data thus obtained were analyzed statistically as per Snedecor and Cochran (1989).

RESULTS AND DISCUSSION

The mean total viable count and aerobic spore count are presented in Table 1. The total viable count of pasteurized milk samples (log$_{10}$ cfu per ml) varied between 4.18 ± 0.095 and 4.43 ± 0.081 among nine different processing dairies and it was the lowest in lab-pasteurized samples at 3.65 ± 0.078. There are highly significant differences (P<0.01) in total viable counts between different processing dairies.

The mean aerobic spore count of pasteurized milk samples (log$_{10}$ cfu per ml) varied between 3.56 ± 0.051 and 3.87 ± 0.112 among the processing dairies. It was the lowest in lab pasteurized samples at 3.09 ± 0.085. There are highly significant differences (P<0.01) between different processing dairies with regard to the mean aerobic spore count.

Larsen and Jorgensen (1996) analyzed 458 samples of pasteurized milk and cream from 3 Danish dairies and found the total viable count of Bacillus cereus ranging from 10^3 to 3×10^5 cfu / ml (3 log$_{10}$ cfu per ml to 5.47 log$_{10}$ cfu per ml). These values were within the range obtained in the present study. The values obtained by the Shah et al. (1996) were lower when compared to the aerobic spore count found in this study.

The number of Bacillus isolates positive for proteolysis and lipolysis is given in Table 2. Out of a total 45 isolates, Bacillus subitils contributed to the highest incidence (33.33%) and the least incidence was noted in Bacillus sphaericus and Bacillus circulans each contributing one isolate (2.22%).

Meer et al. (1993) concluded that 57% of the Bacillus isolates obtained from 59 Grade A milk samples in Oregon, US were lipolytic. Almeida et al. (2000) detected that 92% of the Bacillus isolates were found to have proteolytic and or lipolytic activity. In this study, on an average 55.55% and 37.77% of total Bacillus species isolated are found to be proteolytic and lipolytic respectively.

Matta and Punj (1999) obtained 59 lipolytic Bacillus isolates and showed that Bacillus cereus
(32.2%) was the predominant lipolytic organism whereas the present study concluded that Bacillus pumilus is the predominant lipolytic organism.

ACKNOWLEDGEMENT

The authors are thankful to the Tamil Nadu Veterinary and Animal Sciences University and the Dean, Veterinary College and Research Institute, Namakkal for providing necessary facilities to carry out the research work.

REFERENCES

