EFFECT OF EXOGENOUS GLUCANASE SUPPLEMENTATION IN FEED ON TURKEY POULT PERFORMANCE

D.Thyagarajan¹, D.Santhis² and J.Ramesh³
Poultry Research Station, Nandanam, Chennai - 600 035, TamilNadu, India.

ABSTRACT

Biological experiment was conducted to find out the effect of exogenous glucanase enzyme at three different levels of 12.5 BG U/Kg, 25 BG U/Kg and 50 BG U/Kg of feed along with control in turkey pre brooder and brooder rations. Sixty four straight run Beltsville Small White turkey poults were randomly allotted to different treatment groups with two replicates of eight poults each. Isocaloric and isonitrogenous levels were maintained in all the experimental rations. Standard management conditions were provided up to eight weeks of age. Performance of turkey poults was evaluated based on the biweekly bodyweight, feed consumption and livability. The inclusion of glucanase enzyme resulted in highly significant (P=0.01) improvement in the eighth week body weight in turkey poults. The eighth week body weight was highest at 50 BG U/Kg feed followed by other groups according to the concentration of enzyme in feed. However no significant differences were seen in feed efficiency and livability.

Key words: enzymes, feed efficiency, growth, turkeys

The cell wall of cereal grains, legumes and oilseed meals contain non-starch polysaccharides (NSP) like cellulose, hemicellulose, pectins, â-glucans, á-galactosides (raffinose, stachyose and verbacose) and pentosans. These NSPs exhibit anti-nutritional activities by interfering with the nutrient accessibility, with a consequent negative effect on the performance.

Exogenous enzymes are added to poultry diets to manipulate conditions in the digestive tract and improve the nutrient value of feed stuffs (Classen, 1996; Meng et al., 2005). Digestive enzyme activities (units/kg of BW) measured in pancreas and intestinal contents increase with age (Nitsan et al., 1991). Rate of development of secretion of digestive enzymes in the post-hatched chicks could also be a limiting factor in digestion (Krogdahl and Sell, 1989; Noy and Sklan, 1995; Sklan 2001), leading to inefficient growth in birds, poor feed conversion ratios and poor livability. The exogenous enzyme supplementation in young chicks may promote digestion and utilization of diets.

¹ Director, Centre for Animal Production Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai-600 051. ² Assistant Professor, Department of Meat Science and Technology, Madras Veterinary College, Chennai – 600 007. ³ Assistant Professor, Central Animal Feed and Food Residue Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600 051

CORRESPONDING AUTHOR: email id - drthyagu2002@yahoo.com

Tamilnadu J. Veterinary & Animal Sciences 6 (2) 95-98, March - April 2010
Microbial enzyme preparations such as xylanase, α-glucans, cellulase, α-amylase, protease and phytase are found to circumvent the adverse effects of NSP in the diet and increase the performance of animals (Lazaro et al., 2003; Mathlouthi et al., 2003). In most of the countries, poultry feed is based primarily on corn and soyabean meal, which supplies major part of energy and protein in the diet. It has been studied that the glucanase improved the energy value of both corn and soyabean meal at all ages in broilers (Leslie et al., 2007).

Glucanase cannot be synthesized by the birds and it digests high molecular weight α-glucans in grain- and cereal-based feeds. Hence it can be used to digest endosperm cell walls which contain about 70% α-glucans. Research on influence of exogenous enzymes on the performance of turkey appears to be scanty. Therefore, the objective of this study is to find out the effect of glucanase supplementation in diet on eighth week performance of Beltsville Small White poults.

The study was conducted with Beltsville Small White turkey poults raised in single tier brooder cages, with each cage as a replicate. Sixty four straight run day old poults were wing banded and randomly allotted to control and three treatment groups with two replicates of eight poults each.

Glucanase enzyme was procured from Biocon Limited, Bangalore. This enzyme is a thermostable fungal α-glucanase enzyme, which has both α-1-3 and α-1-4 endo-glucanase activities. Glucanase enzyme having an activity of 500 BG units/g was incorporated in the turkey pre-brooder and brooder rations at three different levels of 12.5 BG U/Kg, 25 BG U/Kg and 50 BG U/Kg of feed along with control. The prebrooder and the brooder rations were formulated to meet requirements of turkey poults. The rations were supplemented with commercial vitamin preparations. Standard management conditions were followed for all the treatments and replicates. Performance of turkey poults was evaluated based on the biweekly body weight, feed consumption and livability.

The mean and the standard error were calculated by completely randomized design as per the methods of Snedecor and Cochran (1994).

The influence of glucanase inclusion in feed was highly significant (P=0.01) on eighth week performance (Table 1). The eighth week body weight was better at 50 BG U/Kg feed followed by other groups according to the decreasing concentrations of enzyme in feed (Fig 1). This result is in accordance with the report that the body weight gain of broilers, fed diets containing different combinations of carbohydrates with glucanase, was greater (P=0.05) with improved (P=0.05) ileal digestibilities of starch and protein than that of birds fed control diet (Meng et al., 2005).

There was no significant difference in feed and livability among the different treatments in this study. It has been reported that feed was not affected (P=0.05) by dietary enzyme supplementation in broilers (Meng et al., 2005).

Feed gain was not affected by addition of enzyme in broiler chicks two weeks post hatching (Mushtaq et al., 2006).

In conclusion, the present study indicates that the supplementation of glucanase enzyme to turkey poults from 0 to 8 weeks of age would improve their growth performance. It is beneficial to use glucanase enzyme in poult feed.

ACKNOWLEDGEMENT

The study was funded by Indian Council of Agricultural Research, New Delhi. The author acknowledges the help rendered by Dr.O.P.Dhanda, Assistant Director General (AN&P), I.C.A.R. Thanks are due to Tamil Nadu Veterinary and Animal Sciences University for providing the necessary facilities to carry out this research work.
Table 1 - Influence of Glucanase supplementation in feed on growth performance in Beltsville small white poults

<table>
<thead>
<tr>
<th>Treatments</th>
<th>2(^{nd}) week*</th>
<th>4(^{th}) week*</th>
<th>6(^{th}) week NS</th>
<th>8(^{th}) week</th>
<th>Feed efficiency NS</th>
<th>Livability (%) NS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male*</td>
<td>Female NS</td>
<td>Pooled**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>126.25(^b) ±1.71</td>
<td>313.42(^b) ±9.12</td>
<td>627.67 ±11.83</td>
<td>1108.50(^b) ±17.80</td>
<td>939.33 ±14.66</td>
<td>1013.84(^b) ±12.98</td>
</tr>
<tr>
<td>12.5 BG u/Kg</td>
<td>135.64(^ab) ±2.74</td>
<td>336.48(^ab) ±5.25</td>
<td>629.97 ±11.99</td>
<td>1161.14(^ab) ±23.54</td>
<td>944.75 ±13.47</td>
<td>1053.80(^ab) ±13.18</td>
</tr>
<tr>
<td>25 BG u/Kg</td>
<td>139.08(^a) ±2.95</td>
<td>350.72(^a) ±7.27</td>
<td>668.28 ±22.26</td>
<td>1192.86(^a) ±24.12</td>
<td>962.56 ±32.60</td>
<td>1075.86(^a) ±20.85</td>
</tr>
<tr>
<td>50 BG u/Kg</td>
<td>133.43(^ab) ±4.55</td>
<td>334.22(^ab) ±12.58</td>
<td>661.25 ±16.34</td>
<td>1207.00(^a) ±25.13</td>
<td>996.75 ±16.44</td>
<td>1102.41(^a) ±15.51</td>
</tr>
</tbody>
</table>

* Means bearing different superscript within the column differ significantly (P=0.05)

** Means bearing different superscript within the column differ significantly (P=0.01)

NS – Not significant
REFERENCES

